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OUTLINE OF RADIATIVE TRANSFER THEORIES APPLICABLE TO
PROPAGATION IN THE SEA'

L. Prieur and A. Morel2

Introduction /1.3.1*

The theories currently in existence were developed during research relating

primarily to electromagnetic radiation deriving from planets or stars, and

more recently to neutron scattering. The radiative transfer problems may in

all instances be stated in mathematical terms, in the form of a transfer

equation. Solution of this equation presents no difficulty whatever when the

medium in which the particles (photons, neutrons, etc.) are propagated is

not a diffusing medium, even if it does itself contain sources of these same

particles. The situation is entirely different if redistributionthroughout

space due to scattering occurs. It is then quite often assumed for the sake of

simplification that the scattering is isotropic or that the absorption is slight

and may be disregarded. Such approximations are generally justifiable for the

study of neutron scattering or in astronomy.

Since oceanography began its development at a relatively recent date,

many fewer theoretical studies have been devoted to the propagation of visible

electromagnetic waves in the sea. On the other hand, a considerable body of

experimental data is available, and a theory, of necessity a fairly complex one

in the case of seawater, might be of a certain value. As a matter of fact,

it is necessary to resort to one to be able to make forecasts in widely varying

fields. For example, we wish to know and forecastii on the basis of the

measurable characteristics of water, the distribution of energy available for - -

photosynthesis, a fundamentally important element in life. We wish to determine

how the solar radiation absorbed by oceans participates ..

in the radiation balance of the planet. A theory is further necessary for

IPart of this bibliographic discussion is covered by contract DRME 72-555.
2Physical Oceanography Laboratory, Villefranche Oceanographic Research Center,
06230 Villefranche-sur-Mer, France.
*Numbers in the margin indicate pagination in the foreign text.
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forecasting visibility, for selecting suitable equipment for photogrammetry,

for interpreting aerial photographs of the surface of the sea, etc.

__ I. Description of The Problem and Factors Involved in Its Solution

Before reviewing the principal radiative transfer theories it is appropriate

to recapitulate the physical factors providing optimum characterization of the

medium and the photometric values permitting description of penetration of the

sea by electromagnetic waves. These basic concepts are discussed in detail in

the classic works and are dealt with in papers on the same subject (for example,

[73, 38, 22, 36, 53]).

I.1. Optical Characteristics

The attenuation of a collimated beam is characterized by (Napierian)

attenuation coefficient c(m-l). Decrease in the flux of such a beam is due to

two phenomena: absorption, Napierian coefficient a(m- ), and diffusion

redistributing the energy throughout space in accordance with a scattering

indicatrix (Napierian coefficient B(O) (m ster- )). The integral over all of

solid angle B(6) is termed the total scattering coefficient b(m- ). These

coefficients, which are defined for a collimated beam, as a matter of fact

describe the elementary events capable of occurring to a photon. The law of

conservation of energy necessitates the relations

b f (O)d = 2 in B(e) sin e de, (1)

c = a + b. (2)

The scattering indicatrix of seawateris very asymmet'ic and very "pointed"

toward the front [53], and absorption by such waters is not negligible even

when they are considered to be transparent. Because of these two facts, any

theory constructed for an isotropically scattering or slightly asymmetric medium,

or for a medium exhibiting negligible absorption, is not realistic enough to be

applied to the ocean. These are important considerations, for they lead to

elimination (or modification) of the majority of methods of solving the radiation

transfer equation which have been established in astronomy or for neutron

scattering.
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On the other hand, the form of the scattering indicatrix undergoes but

little variation for the various waters of the sea, except perhaps at very small

angles and in the rear portion [53, 51, 52]. There is consequently a nearly

constant relationship between total scattering coefficient b and angular

coefficient B(e). This results in introduction into calculations of the,

0 , c scattering indicatrix in a normalized form and in allowance for the absolute

value only in parameter b. Ratio b/c, which to some extent characterizes the

probability that a photon will be scattered along a path of optical length T,

assumes great importance in this case. As a matter of fact, the probability

that this photon will be scattered in a given direction 8 is then proportional /1.3.2

to b/c whatever the type of water encountered. The importance of this ratio

for description of penetration of light into turbid media has been ascertained

-- chiefly by way of experiment, by V. A. Timofeyeval[89], for example. In

mathematical form, as it is described in what follows, this ratio appears

explicitly in the transfer equations.

1.2. Values Characterizing the Distribution of Luminous Energy

3 The basic photometric value is luminance L(P, D), which is the flux received,

normally in P, by an elementary surface dS within an elementary solid angle, dw

enclosing direction D. This quantity describes the light field completely,

at all points in space and for all directions. However, it is also the quantity

which it is the most complex to obtain both in theory and by way of experiment.

The luminance integrals are often considered over a half-space in calculations,

in order to obtain the illumination of a plane, or over the space in its

entirety in order to obtain the scalar illumination:

The illumination of a plane is (see Figure 1):

E - L.coso d (3)

The scalar illumination is:

(4)

IT = cz, in which z is the actual distance expressed in meters. Hence Tris a
dimensionless value and for this reason the terms optical depth and optical
length are inappropriate. They are used here in imitation of English usage..

3
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1.3. Influence of Wavelength '

Radiation is assumed in the majority of theoretical calculations to be

monochromatic. This is justifiable, since the physical scattering phenomena

(fluorescenceJ Raman effect) are very often negligible in study of the propaga-

tioniof solar or artificial radiation in the sea. In addition, such an assump-

tion is necessary because the optical characteristics depend on the wavelength.

However, it must be remembered that the form of the indicatrix does not depend

on it too much in the first approximation [54] [51b]. Thus in measurement in

-which a photometric value depends only on ratio b/c, a change in wavelength is

equivalent simply to change in the value of this ratio.

1.4. Boundary Conditions

The optical characteristics presented in the foregoing define tIhe.medium-

itself in its elementary interactions with electromagnetic waves. In order ':

1 fully to define the problem it is aproprite to assign the boundary conditions,

A -which to some extent represent the initial data. A certain distribution of lumi-

nances over the surface of the sea is assumed and the distribution in depth is

"'sought, or the emission indicatrix of a submerged lamp i's adopted, and so forth.

iiThese conditions are independent of the optical characteristics of the medium

itself and-relate only to the geometric distribution of the luminances within the

limits of the medium. Generally speaking the choiceof c'ordinate system will'

depend upon their symmetry, as will also choice of the method to be employed to

gain knowledge of the distribution of the luminances in depth.

Before the problem is solved in theory, we are forced to render. the data .

ideal so that they will exhibit a simple.mathematical form. It is asslmedfor

study of penetration by daylight that the surface of the sea is illuminated

luniformlY in all directions, or only by the Sun, that is, in a single;'direttion.

!The bottom of the sea is assumed to be of infinite depth or that it has a..'

zero or uniform reflection coefficient. For penetration by artificial' light

the source is collimated or obeys Lambert's law and further is assumed to be

a point source. . .
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1.5. General Considerations

A detailed survey of radiation transfer has been made in several more or

less recent publications. Generally speaking their authors have devoted them-

selves to study of the problems deriving from astronomy, and thus none of the

papers deals with the particular case of seawater. The basic principles of

certain theories presented nevertheless remain valid, only the methods of

solution undergoing change in details. The most complete work on the various

current theories unquestionably appears to be that of V. V. Sobolev [85]. Other

fundamental works discuss certain points in greater detail, such as those of a

--- S. Chandrasekhar [16], V. Kurganov [40], and R. W. Preisendorfer [71], [72].

In our presentation of the various methods of solving the radiation transfer

problems (II) we have endeavored to single out the physical concepts on which

the methods are based, whenever such concepts exist. In addition, the only

theories presented are those which can bring into play an asymmetric indicatrix

corresponding to the case of seawater. We subsequently consider (III several

specific problems already studied by various authors. They have been rendered

ideal enough to permit application of the previously described theories, but

not excessivelyso, so that the results will satisfactorily cover the actual

physical conditions.

II. Methods

There are indeed very many methods, which are used in more or less different

forms by various authors. It is often difficult to distinguish one from the

other. Their classification into different types, although necessary for the /1.3.3

sake of clarity, may appear to be arbitrary because of their overlapping.

However, they are here classified into five broad categories each of which

involves different mathematical or physical considerations.

- The first category includes the methods which resort to mathematical

expedients in order to solve the transfer equation with a minimum of approxima-

tions.

- The second category embraces the natural methods permitting calculation

of the various orders of scattering in sequence.
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-,In the third category resort is no ,longer made to the simple process of

attenuation and scattering but to diffuse reflection and transmission operators

corresponding to a layer of the medium.

- In the fourth category the real propagation of a photon is simulated.

- Lastly, there have been included in the fifth category the theories which

assume a random variation of the scattering process in time, while in the

preceding methods the phenomena are generally assumed to be independent of time.

II.1. Mathematical Methods

All these methods make use of the transfer equation, which is generally

obtained on the basis of local conservation of energy. However, no consideration

is given to the physical import of the calculations performed in solution of

the equation.

II.1.1. Transfer Equation

It is assumed for the sake of simplicity that the phenomena are stationary,

and that the radiation is monochromatic. The energy balance is expressed at

each point P of the medium, and for each direction D, for an element of volume

dl-dS (see Figure 2).

'1The difference between the flux entering this volume and that leaving it,

depending on direction D, is: _ .
dL (P.D) . dS 7 e dw

dt (S)d

- The attenuation loss in direction D is, in accordance with the definition

of c,
-of c(, (P)aL . L(P,D) dS. S -

(6)

- The scattering gain in direction D in energy penetrating element of volume

dV and coming from direction D' is (see the definition of 8):

(P, D, D') fL (P, D) dw dt d (7)

The law of conservation of energy requires that expression (5) and the sum

of expressions (6) and (7) be equal,

SdL = - c(P) L(PIb): +I 8(P'D, D' ) L(P, D') dw', (8)
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which is the transfer equation under stationary conditions (independent of time)

and with no internal source.

All the methods in this group assume that the optical characteristics are

independent of the space variable, which here is symbolized by P. In addition,

it is convenient to normalize the scattering indicatrix by its integral, and

thus to show the total scattering coefficient explicitly. Equation.(6) becomes

1 d L( - LP, D) + L (P, D). (9)

in which, by definition, LI (P, D) . L (PD') (D, D) dw

(10)

and n (D, D') dw' = I quelque soit D.

t-. " (11)

whatever the value of D may be.

Function L* is termed the radiation transfer source function and sometimes

the "path function" [22].

Integration over solid angle w leads to a simple relation:

Div E = - a E (11b)

which is another form expressing the local conservation of energy.

In the case of penetration by daylight the surface illumination does not /1.3.4

depend on horizontal coordinates, since it is assumed to be constant over the

" __ entire surface. Then only depth z as a variable and direction Di remain. When
optical depth T = cz and angular coordinates (see Figure 3) are introduced, the

transfer equation is written as follows:

+ 1 2
dL (T. ) - L (r, , ) + b L (T, ', ') n (c) d' ' (12)

dr = - i o

with

cos a = tp' + ) cos (13)
(13)

. = cos e (14)

This is the homogeneous transfer equation for a medium with "plane-parallel"

"- symmetry, the latter being so called to point up the surface illumination condi-

tions. Lastly, although this is not a restriction on the methods advanced later,
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a case is contemplated in which axial symmetry also exists, that is, in which

azimuth angle 4 has no effect on the luminances (this requiring the surface

distribution to possess the same symmetry).

With these hypotheses the transfer equation becomes

dL (T. V) L (T, ) + b/ L (T, 2 d15)
dr C 5

-1

V This equation is often called a "homogeneous equation". So that the problem

will be fully defined, it is further appropriate to assign the boundary conditions.

These conditions'make it possible to establish the integration constants which

appear when this differential equation is solved. This is often accomplished,

however, by introducing into equation (15) a supplementary term representing the

light directly transmitted without diffusion from the surface to depth T. This

term is of the form L(o, i)eT ' . The equation obtained is then said to have a

second term. The boundary conditions of the problem as thus formulated must

consequently then be changed [96, p. 1099], [16, p. 22].

11.1.2. Discrete Ordinate Method. Eigenfunction Method.

Equation (15) is an integral differential equation, and there is no simple

analytical solution of such an equation. Source function L' is complex in

structure because of the asymmetry of the indicatrix. The property of addition

of spherical harmonics is also generally used in order to simplify this integral.

The mathematical process, which has been described very completely by S.

Chandrasekhar, is as follows:

- Function B(v) = b/c S n() is expanded into a series of Legendre poly-

nomials . N

/ t=o (16)

1 being an integer. N is the total number of polynomials selected for approxi-

mation of the scattering indicatrix. It is found by integration over P and by

taking into account the orthogonality properties of the Legendre polynomials that

6o, the first coefficient in the expansion, is merely ratio b/c (the zeroth

order polynomial being unity).

The property of spherical harmonic addition leads to

8



2n Nf a (a) de' =Z Pt (1j) I (17)

Once the scattering indicatrix has been put into manageable;mathematical _
form, the principal remaining difficulty is approximation of the integral

operator of equation (15). Equation (17)>,being taken into account, the latter

becomes
1 (TNW'

dL (, P) - L(, ) + P () (') L , ') dj'

Chiefly two methods, which will be presented in greater detail later on,

have been used to solve this equation:

- The discrete ordinate method developed by S. Chandrasekhar [16]. '(The

reader is referred to this work for the detailed calculations.)

Use is made of the Gauss squaring method, which divides the integration

interval according to the zeroes of the Legendre polynomials (other squaring

methods are possible and in certain cases are more precise; as a matter of fact, /1.3.5

the scattering indicatrix development selected affects the entire calculation

process. For further details on other types of development the reader is

referred to the work by V. V. Sobolev [85] or to that of V. Kurganov [40]. It

is logical, however, to employ the Gauss squaring, since the Legendre polynomials

have already been used for development of the indicatrix).

Hence interval (-1, +1) is divided according to the zeroes .j of the

Legendre polynomial P2n(v) which are 2n in number. The squaring formula is

+ f (j)dj " a. (I (19)

n-1 3 =-nJ

with a. . M j

J [dP(p)]1 j -L di J (19b)

Coefficients a. are present in the form of numerical tables.

Equation (18) is then replaced by a system of 2n simple homogeneous

differential equations of the form:

pPi. w a. (P.) I. (.cii t with i"- 1 2-+ +"
1 (20)n

9



the only condition set for n is:

n - 1 > 2 N

It is said that when n is selected the equation is solved in the nth

approximation.

The solution of this system is the conventional one. Solutions of the form

L (T, ) = e + k f ( i  , k ) . (21)

are sought.

Constants k are the roots of the "characteristic" equation of system
(20):

1 n IN - Z P (j) z(k) (223

j=+n £=o 1 + vj k

Values Z are obtained by recurrence, and it is shown that the equation is

6 of order n in terms of k ; thus there are 2n different roots, which are

generally symmetrical.

It is to be noted that the values of ka depend only on the values of paj and

coefficients w of the development of the scattering indicatrix.

The solution of system (20)- is written as follows:

- .. .I + i k f ( i ' k ( 2 3 )
f=-n

in which f(i., ka) is the symbol for a function of the parameters now known.

Hence the final result shows that the luminance is expressed as a function of

a sum of exponents coefficients k of which are characteristic of thi -inedium

itself, once number n has been selected.

Constants c- are determined by the boundary conditions of the problem

assigned; for example, if the medium is infinite, the luminance should tend

toward zero for indefinitely increasing T, and so the values of c should be

zero for positive values of k .

It is to be observed that the luminances are obtained only for discrete

values of angle 0(pi) imposed by the Legendre polynomials of order 2n.

The calculation principle remains the same if the symmetry is not axial,
since development into a Fourier series is effected:

10.



L (r,.T, I) = CO L (24) /1.3.6

and the values of Lm(T, p) are calculated by a method very similar to the

foregoing but somewhat more complex since m figures directly in the equations.

Thus the method remains a very general one. It is very convenient, in

particular when it is a matter of gaining knowledge of the influence of surface

conditions on the penetration of light into a medium having a given indicatrix,

-since the values of k remain the same and only -coefficients c change. Hence

in theory one could tabulate the values of k and of function f(i., k ) of

equation (20) for the typical values of b/c, the indicatrix being constant in

form. Under this assumption solution of the problem assigned would be confindd

to solution of equations (23) in accordance with the boundary conditions deriving

from the problem.

Eigenfunction Method

This method was initially applied to radiation transfer by Case [15] and

then extended to the case of nonspherical scattering [50], [18, 19]. A survey

of the method is to be found in the article by S. Pahor [56].

The transfer equation is taken again in the form of [18], that is, the

medium is assumed to be plane-parallel and to have axial symmetry (see Section

II.1.1.). In this instance as well the general case should be treated by

development into a Fourier series in accordance with the azimuth (equation 24).

Solutions of the form

L(T, V) = 0 (V ) e
-T/

V (25)

are sought a priori with an important normalization condition, also set a priori:

........... _ 1 (26)

Equation (18) becomes:

(V (- }) j (v - ii) =V ~ -1 v p ) Pj 
( ) 

d(27)
2=o -1 (27

The two equations (21) and (25) are seen to be equivalent in form. The

present method differs from the preceding one at this point. In placeof approxi-

mation of the integral indicated above, a series of functions is defined:

11



-gt(v) f .0 (V, ) PZ  (p) do j(1 (28)
which obviously are calculated on the basis of a recurrence relation derived

from that linking 3 consecutive Legendre polynomials:

S1V(2 +l- + )g c)= ( +l) (V + Z g .. .v).j - (29)

The first term, in accordance with equation (261, is:

gov) = 1 . (30)

The process is continued by defining the function:

.( iv) Zgt Mv PZ (V ) ; (31)
t=O

equation (27) becomes

[C(-V ,) Cv i) = (g V vi)' i (32)

When v falls within the range (-1, +1), v - p is cancelled out. The
expression for the solution sought in this range is then

Sg( P )+ X (V) 6* (v - , (33) /1.3.7.

in which 60 denotes the Dirac distribution.

P indicates that the principal Cauchy value of the following expression is
to be adopted in integration; X(v) is calculated on the basis of the normaliza-
tion condition (equation 26):

. 2 .. 1 - v. i- (34)

There is thus a continuous set of singular eigenfunctions within the range
(-1, 1). A finite number M of discrete eigenfunctions satisfying equation (26)
is also found outside this range:

v . (+ vi , v)Vi, ) = x i V with L = 1, 2, Met 2 M 2 N + (35)

The values of vi are determined by the normalization condition (equation
26).

To recapitulate, functions (v, p) sought form a set consisting of a
continuous subset and a subset of discrete elements.

The great value of this method lies in the fact that this set is complete
and that the eigenfunctions are orthogonal [15, 18, 19, 50].
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function L*, equations (39) and (40) then making it possible to find L(T, P).

Mathematically the problem is reduced to solution of an integral equation with

respect to L*, which is easily obtained by replacing the expression for L(T, v)

of equations (39) and (40) in equation (38). This calculation principle is

widely used in the case of spherical scattering, since the integral equation is

simple, but involves substantial anisotropy. The mathematical developments are

complex although possible. However, certain methods which have been described

are indicated below without being discussed in detail.

- Simple Model of R. W. Preisendorfer

This model is described in [70]. The basic hypothesis consists in setting

L (, )= *L (0, P)e k/ (41)

in which Lt(0, p) is assumed to be known (initial conditions) and k is a constant

independent of the depth which may be determined either by another method or

by experiment. The expression for L (T, p) is then easily found by means of

equation (39), for example. This model is found to be very practical above

all for study of the contrasts of submerged objects [22].

- Successive Approximation Method

This method may be understood directly on the basis of equations (38), (39),

(40). A probable value is assigned a priori to luminance L(T, p), for example

by setting T/
Lo (' )= Lo  (0, v) e (42)

By use of an appropriate mathematical method determined by the form

imparted to the scattering indicatrix, function L*(T, p) is calculated by means
o

5. of equation (38), and then L1 (r, p) is calculated by means of equations (39),
(40).

The first approximation is thereby obtained and the process is repeated

in order to arrive at an increasingly precise solution (convergence generally

takes place). The difference between the nth approximation and the real solu-

tion depends, of course, on the method selected for representation of the

scattering indicatrix.

14



- Spherical Harmonic Method

In this method solution L(T, p) is sought in the form of development into

a series of Legendre polynomials, the scattering indicatrix itself being developed

in this form. The homogeneous transfer equation is then solved by use of the

orthogonality properties and the recurrence relations between the Legendre poly-

nomials. Different constants are involved; in order to calculate them use is

made of the equations (38) and then (39) and (40), which take the boundary

conditions into account.

This method is described in [40] for isotropic scattering and in [44] for

anisotropic scattering. In [96] anisotropic scattering is also considered and

an interesting comparison is made with the discrete ordinate method, these two

methods ultimately yielding the same result.

- Other methods involving calculation of variations [40] pr the properties

of supplementary mathematical functions [16] may be used, but they are actually

of interest only in cases in which the scattering is isotropic, and for this

reason are not described here (see Section I.1.).

11.1.4. Approximate Methods for a Scattering Indicatrix Sharply Pointed
Forward

These methods appear to be particularly well suited for the seawater medium,

since in the approximations they make use of the fact that the scattering indi-

catrix is extremely sharply pointed forward. They are generally used when the

source luminance is unidirectional over the entire surface (as in the case of

sunlight, for example) and are valid only for small angles 0 (generally speaking,

< 300).

Two types of methods are possible, methods employing the perturbation

technique and those using Fourier transforms.

- Perturbation Methods

A detailed description of these methods is to be found in [96, 77, 79].

The general principle is that of finding the solution for L(', i) in the form

L (T, ) Lo  (T, p) + L1  (T, ) +L ) (43)

in which L is the light which has not been scattered and thus is known, L

15



corresponds to the first approximation, and L is the residue which may be

estimated once L1 has been calculated. It is assumed that optical depth T is

small, so that L1 >> L. This makes it possible to write the transfer equation

for L1 with the appropriate boundary conditions only, and then for E. The

point of the indicatrix is introduced into the solution of these equations;

for example, in equation (38) L(T, j') is developed into a Taylor series around

L (T, i') = L ( + DL Ct. u) .. .. (44
aP ( - ) .(44)

Once the scattering indicatrix has been developed in terms of Legendre /1.3.9

polynomials, equation (37) may then be employed for the classical perturbation

calculation [96].

This calculation is of value only for slight optical depths. As a matter

of fact, when simple scattering is involved the light is scattered chiefly in

-direction p' = i owing to the point of the indicatrix. The greater the extent to

which multiple scattering occurs (this being the case when T increases) the

more necessary is it to advance the development to higher orders so that L will

'remain small in comparison to L1 , anindispensable condition for application of

", this perturbation technique. These conderations ultimately restrict the

application of this method.

- Fourier Transform Methods

In the solution of particular problems such as determination of the

distribution of luminances at a certain distance from a point source situated

in a diffusing and absorbing medium (point spread function), the approximation

of small angles, which is possible owing to the sharply pointed indicatrix,

-makes it possible to put the integral occurring in the transfer equation into the 1

form of a convolution product. In this case the solution is simplified in the

Fourier space. This technique has been utilized, for example, by Wells [97] and

by Dolin [20, 21].

11.2. "Natural Solution" Methods

The various methods based on evaluation of the successive orders of

,scattering have been grouped under this heading. The basic physical concept is

16



. -'- obvious: photons scattered n times undergo simple scattering more than do photons

scattered (n - 1) times arriving at the same point in the medium.

11.2.1. Principle

The principle underlying these methods is a very simple one.

- The luminance transmitted directly from the source is calculated at

each point P of the medium and for each direction D: Lo(P, D).

- Once Lo (P, D) is known it is possible to calculate the luminance scattered

in direction D from each point P'

L I(P'D)= F L0 (P'D') 0 (P' D, D') dI' R L(P'D' (45)

The scattering indicatrix is, of course, assumed to be known. R denotes

the operator

- The first order luminance at point P is derived from L* by taking into

account the attenuation between point P' at which simple scattering occurred

and point P: - -

L1  (P,D) =o L! (P', D) T (IPP'I) d (IP 'I) = T L* (P', D) ; (46)

IPP'rI represents the geometric distance between points P and P' and T is the

attenuation undergone by a beam ;over distance PP'. If distance JPP'I is:r

and ff the optical characteristics are constant over path PP',

T (I PP') = e- cr

P is the point situated at the boundary of the medium and in direction D,

(Figure 4).

Equation (46) may be written as follows:

L1 (PD) = TR L (P, D) -SL (PD (47)

- The higher order luminance is calculated in the same way.

- The real luminance sought is obviously the sum of the different orders:

L (PD) = L (PD) (48)i=o 48)

A formal study of this natural solution, and in particular proof that the
solution found is indeed the solution of the transfer equation, are to be found
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in the book by R. W. Preisendorfer [71]. A significant advantage of this method

is represented by the fact that it provides directly the relative importance /1.3.10

of the luminance orders.

11.2.2. Properties of Luminance Orders

Some of the simple properties are indicated in what follows.

- The concept of order is a relative one, since it defines the zero order

as being the luminance coming directly from the source. If, for example, the

source is represented by the sky, it is obvious that the light coming from this

source has been scattered in the atmosphere. If the atmosphere were to be

included in the medium, the breakdown into luminance orders would be different

but the result would be the same.

- Operators R and T are linear relative to' the luminance. Thus if

a~ ' calculation is performed for the same medium and for two types of surface dis-

tribution, the result corresponding to the total distribution is found by

simple addition.

- When the scattering indicatrix does not change in form, operator R is

linear relative to ratio b/c. As a matter of fact, equation (45) may be

written in the form

L (P,D) = b/c L. (PD) (n  (D, ') d ; (49)

in this instance the coordinates of P are expressed in optical lengths and the

medium is assumed to be homogeneous as regards the optical characteristics.

On the basis of this property it is quite easy to demonstrate the validity of

the relation [75]

L /c (P,D) = (b/c)1  Ll (PD),
(50)

in which luminance L.(P, D) is the luminance of order i calculated on the1

assumption that the medium is not an absorbing one (b/c = 1). It is consequently

sufficient to calculate the orders of luminance for the non-absorbing case.

The total luminance for every value of b/c, if the medium is illuminated by the

same source, is then found by means of equation (50). This property greatly

enhances the value of employing thenatural solution in the case of seawater,

since the longest calculations may be performed merely once for various types of

sources).
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Another consequence of equation (50) is that the contribution made by

luminance of order i to the total luminance is the greater, at the same optical

depth, the more greatly absorbing is the medium (the smaller is b/c). Application

of this to the case in which only zero order luminance is a carrier of informa-

tion (unscattered light) reveals that this information will undergo the less

destruction by-.scattering, for the same optical depth, the smaller is ratio

b/c. (Ratio b/c may be varied, for example, by appropriate choice of the

wavelength.)

11.2.3. Practical Application

- The natural solution method is applicable to all types of initial

conditions. However, the total number N of luminance orders calculated is

of necessity limited, either for lack of time or for lack of computer memory

capacity. The approximate luminance obtained is

L = N LL - L (51)
aP i=O i=N+1

The higher orders of luminance are generally small in comparison, to the

first orders for slight optical depths. On the other hand, the greater the

depth the more substantial are the orders higher than N and consequently the

greater is the increase in the total error. This method thus yields exact

results for slight optical depths, the limit of application obviously being

determined by number N and by ratio b/c (see equation 50).

Another advantage of this method is the possibility of using the redL

diffusion index in the form of a numerical table, without the need for

representing it by a mathematical development.

- This method has been applied fo the case of seawater up to the first

order [41, 38] and up to the third order [86] for the penetration of light

deriving from the Sun only. It has also been applied to seawater up to the

21st order, with a realistic experimental indicatrix and for various types

of initial distribution [75]. These last-named calculations make it possible to

arrive at knowledge of the distribution of luminances down to 8 to 10 optical

depths with good accuracy. It has been found in particular that for the pene-

tration of daylight luminances of an order higher than 2 occur (depending more

or less on the value of b/c) as soon as the optical depth exceeds unity. This
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emphasizes the fact that calculations in which only simple scattering is taken

-- into account in a layer of a thickness greater than one optical half-depth
A1 a ------ ----- - -- -- -- --

remain highly approximate.

11.3. Methods Making Direct Use of Invariance Principles

Application of the invariance principles has made it possible to achieve

exact solution of a large number of problems, particularly albedo problems for

which the preceding methods yielded only approximate solutions. Preisendorfer /1.3.11

considers them to be the basic concepts of any radiation transfer theory [72].

A detailed account of the methods is to be found in the works cited in the

bibliography [16, Chapter VII] [71, Section 23]. _

11.3.1. Invariance Principles

The following is the physical viewpoint. The medium is divided into layers,

which are generally but not necessarily planes. Study is made not of the

physical phenomena taking place inside a layer but only of the interactions

between this layer as a whole and the radiation flux. Under these conditions

the layer of the medium reflects diffusely on the side on which the luminance -

enters and also transmits diffusely on the opposite side. As a result of .
__ - __ I -- - P

simple conservation of energy (Figure 5) two equations are obtained,

L (a) = L (b) T (b,a) + L_ (a) R (a,b)

(52)
L (b) = L+ (b) R (b,a) + L (a) T (a,b)

Luminances directed upward are identified by a plus sign and those directed

downward by a minus sign.

The entering luminances are L (a) on the upper surface of the layer and

4+(b) on the lower surface. The other two types of luminances are emerging

ones. The operators R(i) j) and T(i, j) are respectively the diffuse reflection

and transmission operators, and the luminances to which they apply enter through

surface i. These operators, which are of the integral operator type, depend on.

the optical characteristics inside the layer, that is, R and T are functions of

c, (P, D, '), and on the thickness of the layer-l

Group of equations (52) is an expression of the invariance principles.

The fundemental invariance principle, which was first stated by Ambartsumyan
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[1], is in reality expressed as follows: in a plane-parallel medium of infinite

optical thickness the emerging luminance does not vary if any thickness is

added to or subtracted from this medium. Chandrasekhar [1.6] subsequently

extended reasoning of this type to the case of media of finite optical thickness

and formulated four additional principles for them. Lastly, the various forms

of these principles for all media are to be found in the work by Preisendorfer

[71].

It is to be noted that equations (52), while they express conservation of

energy, are equivalent to the transfer equation. Once the problem has been

formulated in this manner, all that remains to be done to solve it is to find

operators R and T. This is accomplished by establishing the functional relations

connecting these operators. Methods of two principal types are used, one based

on continuous formulation and the other on discrete formulation (addition of

layers).

11.3.2. Continuous Formulation

It is applied chiefly to plane-parallel media illuminated in one direction.

It is discussed in detail in [16, Chapter VII].

- A group of four integral equations satisfied by operators R and T is

first formed on the basis of the mathematical expressions of the invariance

principles (which is not presented here). The optical thickness, T, of the

medium in question and the scattering indicatrix enter directly and explicitly

into these equations.

To solve these equations the indicatrix is again developed into Legendre

polynomials and an eigenfunction, spherical harmonic, or successive approximation

method is applied. Chandrasekhar [16] has shown that the solutions are broken

down into products of functions some of which depend only on the angle of

incidence on the layer and others only on the angle of emergence (reflection

or transmission). There are two such functions, which are conventionally termed

X(p) and Y(p) when the medium is of finite optical thickness. When the medium

is infinite only a single function is involved, that termed H(p). A great

amount of study has obviously been devoted to these functions.
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The value of this method lies in the fact that it provides an analytical

solution to radiation transfer problems. However, while it may be applied to

nonspherical scattering (Chandrasekhar, S. Pahor, Lenoble, 1963), it neverthel.ess

appears to be not as convenient as the numerical methods now that computers

have been developed.

11.3.3. Discrete Formulation

In contrast, this formulation lends itself readily to computer calculation

The following is the principle of resolution (all the calculation stages are

- discussed in detail in [71, Section 70)]). .

The medium is divided into layers of equal thickness, and only evenly

distributed discrete directions are considered. Equations (52) are then matrix

equations. Matrix operators R and T are assumed to be known for an elementary

layer. They can be determined by assuming that only simple scattering occurs

in the layer if the latter is of small optical thickness, or could be determined

by any other method yielding a precise solution of the transfer equation for

optical thicknesses which are not too great (the natural solution, for

example).

According to equation group (52), the emerging, reflected, and transmitted

luminances can be found if the luminances entering the layer are known. A

layer of equal thickness is added under the preceding layer. The luminance /1.3.12

emerging from the latter downward is entering luminance as regards the added

layer, while operators R and T remain the same (if the optical characteristics

are homogeneous in the medium). Thus all the luminances are calculated by

iteration, by successive addition of layers of equal thickness.

Diffuse reflection and transmission operators for 2 layers of equal

thickness are derived from operators R and T which are known for one layer. There

are recurrence relations making it possible to obtain the operators corresponding

to n successive layers. These relations are the equivalent of the functional

relations established in the continuous formulation.

Hence it is possible, for a medium with given optical characteristics,

to calculate the elements of the operator matrices corresponding at an equal

optical depth to a whole number of elementary layers. To arrive at knowledge of
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the distribution of the luminances at the various optical depths it suffices to

apply the matrix operators to the luminances imposed by the boundary conditions.

In this method the accuracy of distribution of the luminances depends

directly on the dimensions selected for the matrices (and thus on the capacity

of the computer employed). It further depends on the thickness selected for

the.elementary layer, since the error committed by assuming that the multiple

scattering in it is negligible is augmented when successive layers are added.

It must be observed that the results 'obtained by R. W. Preisendorfer for

26 directions in space and for an elementary layer thickness of one optical

half-depth are in close agreement with experimental data [71, Chapter 11).

It may be said in recapitulation that this method appears to be well suited

to penetration of daylight into the sea, to the extent that no attempt is made

to determine the continuous angular distribution of the luminances with precision.

In particular, it makes it very easy to deal with cases in which the sky is notj

uniform but cloudy. This method is not limited to the case of daylight pene-

tration, but in other problems (point source, laser ray) the number of matrices

necessary for calculation increases considerably, the simplification made by the

plane-parallel symmetry now disappearing.

11.4. Monte Carlo Methods

These methods are essentially numerical ones and the frequency of their use

has increased apace with the development of computer capacity. The principle

- is that of following the progress of a photon penetrating a scattering-absorbing/
A - /

medium in order to learn its position and its direction at the place in the medium

in which the detector is assumed to be located. Thus a large number of photons

are followed and the final distribution sought is obtained by statistical means.

In these methods all the phenomena of interaction between photons and the

medium must be expressed in the form of the law of probability, refraction and

reflection at the air-sea interface, absorption, scattering, scattering angle,

etc. As a matter of fact, it is necessary to know only the laws governing the

elementary phenomena, as is the case with seawater.

As regards a photon, absorption behaves as an all-or-nothing phenomenon

and the probability that a photon will disappear is a function of the path that
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it has traveled in the medium.- It is thus necessary to record this path, This

is often simulated by assigning a starting statistical weight which decreases

as a function of the path traveled with each event underg on iby the photon-. The -

, photon is considered to have disappeared when its weight drops below a preassigned_

value.

Two phenomena must be determined for scattering: the place at which the

photon is scattered and the angle indicating the departure of the photon from

its initial path. 'It is similarly necessary for reflection and refraction to

determine by a probability law if the photon is reflected or refracted.

To apply these probability laws it is necessary to have a random number

generator which is resorted to on each occasion that an event is undergone by

the photon. With this random number and knowledge of the probability law

assigned to the event, complete determination is made of the progressoof the

-photon (scattering angle, reflection, etc.).-

In these methods the scattering indicatrix is generally tabulated and

may thus be very markedly pointed forward.

There is in reality a wide variety of methods, in some of which the random

process is applied to all the physical phenomena and in others only to some of

the phenomena, with an analytical process applied to the others.

These methods are very general ones, and models of complex scattering media

may be constructed. A very complete ocean-atmosphere model with clouds for

various altitudes of the Sun is presented in references [57-65]. One disadvantage

of these methods is due to the fact that they are purely numerical ones and that

the physical laws are consequently more difficult to reveal.

Thus it is necessary to repeat the calculations in their entirety in order to

determine the influence of each parameter'. Another disadvantage is that refine-

ment of the calculations is a lengthy process requiring very careful verifica-

tion, since the accuracy of calculations of this type can be known only when

they have been completed [58]. In addition, this accuracy depends directly on

the time devoted to the calculations, since it is determined by the number of

YL> lrecorded "cases" of photons penetrating the medium under study.
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II.5. Theories Taking Fluctuations Inside the Medium into Account

It was assumed in the foregoing that the optical characteristics of

the medium were fixed and stationary (refraction index, scattering indicatrix,

absorption, attenuation, etc.).. Under natural conditions, however, the

refraction index of the atmosphere or of the ocean is not homogeneous and

exhibits fluctuations in time of varying scale. A medium is said to be

random or turbulent. It could be assumed that these fluctuations are

stationary in nature, and.a scattering indicatrix could be derived and the

preceding methods applied. In reality these methods are not suited to this /1.3.13

case, for which several theories have been elaborated. The practical problem

consists in learning the response of a detector having a certain time constant

and a certain field angle to the intensity of a source (generally a remote one).

A turbulent medium is situated between the source and the receiver. If this

medium does not fill all the space between the source and the receiver it is

easy to arrive at the first case by simple optical geometry calculations.

These theories have generally been applied to the propagation of a laser

beam or to explain scintillation through the atmosphere, which is assumed to

be fluctuating but transparent. In other words, there are no particles in the

physical sense of the word, the scattering then being due only to index

heterogeneities. In reality there is no physical discontinuity between the

scattering by particles and that generated by index heterogeneities. Logically

both phenomena should be taken into account, above all in the case of seawater

(see, for example, [102, 76, 30]). Only the influence of index heterogeneities

is considered in what follows.

It is not possible in this survey to deal exahustively with the problems

raised by the random scattering processes, to which much study has been and is

being devoted, especially in atmospheric optics. The works on which the

majority of the current studies appear to be based are those by V. I. Tatarskiy

[87, 88] and Born and Wolf [11]; many articles have been published in recent

years [6, 7, 8, 13, 14, 23, 25, 29, 32, 33]. Up to the present, however, there

have been only few applications to the case of seawater [102]. Discussion here
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will be confined to brief indications of the manner in which the problem is

formulated and in what terms it has been solved.

The basic equation [87, p. 60] which describes the propagation of an

electromagnetic wave the wavelength of which is very small in comparison to the

dimensions of the turbulent cells, has been set up on the basis of a Maxwellian.

equation.

V2 + k2 2 n = 0
(53)

in which n is the index and E is the electric field vector representative of

the wave.

In order to determine the illumination at a point situated at a certain

distance from a source it is enough to solve the scalar equations of the

components of the electric field. One component being u, the solutions are

sought in the formu= Aei

-~in which A is the amplitude and s the corresponding phase.

Since the refraction index undergoes random variation, the amplitude and

the phase of the wave will also be characterized by random variations. To

describeithe distribution of illumination around a point use is made of the

mutual coherence function F [11, 55], which is a mean function in time:

•r(k1  '" ' ) = u(x1  , t + T) .u P t)4

- or analogous statistical functions, correlation functions, or structural functionsl

.[87]. (In the above equation xl and x2 are two points situated in a plane

perpendicular to the propagation of the wave.)

It is to be noted that function r(x1ix 2, o) represents the correlation

between signals obtained at two points at the same time, and that r(x, x, T) is

the correlation between the signals at the same point at two moments separated

by time T. This function is thus related directly to the concept of coherence.

Methods of two types are discussed by various authors [32].

- Solutions to [53] are found in terms of A and s, and the correlation

functions are then calculated for the phase and for the amplitude depending on

the correlation functions for the index [87, 88, 103, 13].
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- Some authors [8, 9, 32, 100] have established a differential equation

-based on the distance to theJsource and relating directly to the Fourier

coefficients of function F; the problem is then to solve this equation.

Certain .assumptions must be made in all these methods, ones such as

glight variations in index, fluctuations in indices expressed in manageable

mathematical forms, etc. In addition, the solution is valid only for a range of

distances which generally are not too large. It is to be remembered that the

results differ according to the values of simple criteria associated with the

j "-wavelength, the aperture of the initial beam, and the observation distance7'

[13, 87, 46]. The coherence function is found to be asymptotic for large
distances [9, 101].

11.6. Comments on Polarization

-. Throughout the foregoing light has been assumed to be nonpolarized. In)

reality,jthe majority of the methods described are equally applicable to study

of light involving use of the four Stokes parameters [16, 71, 5, 4]. According

to certain authors [28] it appears that the fact that the polarization of

-daylight is unknown does not greatly modify the results from the viewpoint of -i

illumination. It appears that no account need be taken of it when the phenomenon

studied is specifically modification of the state of polarization. A survey

of the polarization of daylight has recently been made by A. Ivanoff [35].

III. Applications ofthe Methods/ /1.3.14

In this section a description is given of certain problems which are of

interest in oceanography and the application to which of the preceding methods

- permits theoretical forecasting of the results. The list of not an exhaustivel

one, but the few questions dealt with demonstrate the supplementary information

~ -which may be derived from application of the theories to theexperimental-data.7--

III.1. Pentration of Daylight into the Sea

Knowledge of this penetration with the greatest possible accuracy is highly

important in biological oceanography in all matters concerning the primary pro-

duction of oceans. The ideal would be to measure the luminances, but although

such measurements are not impossible [84, 95J, their generalization appears to

be difficult and probably not necessary. Knowledge of the extinction coefficients
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of plane or spherical illumination is very often enough for practical applica-

tions. However, these coefficients are not optical characteristics, since they

depend additionally on the surface illumination conditions. Thus for the purpose

of efficient forecasting of daylight penetration it is necessary to undertake

to establish relations between the extinction coefficient and the optical

characteristics (Section I.1.).

The definition itself of extinction coefficient K is

K g (54)
E dz

in which E represents the plane or the spherical illumination. These coefficients

obviously have values intermediate between the absorption coefficient and the

attenuation coefficient.

To find the relations cited above one may calculate the distribution '

of the luminances for different types of surface illumination conditions and for

different optical characteristics; illumination E and thus K are derived from

them by integration. For the sake of greater simplicity it is generally assumed

that the medium is plane-parallel (see I.1) and homogeneous.

Many calculations employing various methods have been proposed for distribu-

tion of luminances in the sea: the discrete ordinate method in the third

approximation [42, 43], the eigenfunction method [24], that utilizing the great

asymmetry of the scattering indicatrix [78, 80], another applying the principles

of invariance [71], the Monte Carlo method [64, 65], and the natural solutions

[75]. However, these calculations are not systematic in nature, often presenting

no more than a few particular cases. It is difficult to derive from them the

influence of external conditions (altitude of the Sun, overcast sky) and of depth

on the luminances and consequently on the extinction coefficients.

-- As regards the influence of the altitude of the Sun on these last-named/
A

values, it appears not to be substantial [10, 39] at least for altitudes which

are not too low. As for the variation of K with depth (in a homogeneous sea),

scarcely any theoretical study has been devoted to it except apparently in

references [66, 67, 69], in which a relation is established between the extinc-

tion coefficient and the ratio of illumination of a plane to spherical illumina-

tion, which itself undergoes but little variation. A simple and interesting

28



theory is proposed in [99]. It is based on the invariance principles and pro-

vides a relation, dependent on depth, between K and the ratio of forward

scattering to back scattering. It does not appear, however, to be directly

applicable with precision to the case of seawater, in which the vertical dis-

7 -~tribution of the particles differs from those considered. _

It is true that a large number of in situ measurements of the extinction

coefficient are available, but only few 6f the measurements were performed

simultaneously with measurement of the optical characteristics of the medium.

In addition, the latter generally varied with the depth, and thus it would

be difficult to determine even by way of experiment the influence of depth on

the relations sought. Lastly, this is a point to which systematic application

of the theory should prove to be useful.

Particular Case of Asymptotic Conditions

Such relations are currentlyknown when the optical depth is sufficiently

great. It is shown [68, 31] that the distribution of luminances tends toward

* an asymptotic form of revolution about the vertical. Under these conditions the

extinction coefficient depends only on the scattering indicatrix and on b/c.

S -: Asymptotic conditions exist whateverjthe scattering indicatrix and the surface

.conditions if ratio b/c < 1 (passive medium), and nearly all the methodspermit

study of them. They have been revealed by way of experiment chiefly in the

--laboratory, in artificial media representative-of- seawater [92, 94]. The /
mathematical methods, for example the discrete ordinate method, very readily

yield the relations between the extinction coefficient and the optical

characteristics, and a very complete study is to be found in references [27, 28,

.106]. A simpler method has been employed [74, 73] in the case of seawater by

use of the real indicatrix (I.1). The close agreement between these last-named

results and the results of experiments [90] makes it possible to obtain

dependable results when they are used for the case of seawater.

In short, the relationships between the extinction coefficientsland the

optical characteristics are known only for the case of asymptotic conditions.

S-For slight depths such relations can be obtained only by the discrete ordinate

method or by the natural solution, which is well suited to the case of seawater,
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in which the scattering indicatrix due to a particle is of a form which may be

considered to be approximately constant.

11.2. Aerial Detection of Daylight Deriving from the Sea

Substances in suspension and in solution act to fix the color of the sea.

Thus an attempt has been made to study this color from a distance, from air- /1.3.15

craft or satellites, in order to obtain a general view of the surface content

of the oceans. This problem involves radiation transfer in the atmosphere, in

the sea, and at the interface. A recent publication [3] deals with the question

in a very specific and detailed manner.

The problem amounts to evaluation of the apparent luminance, Lz, of the

sea at a certain altitude, z, for various wavelengths.

L + (L + LJ) (55)

1" L* is the luminance scattered by the atmosphere in the direction in questiona
from the source made up of the Sun and the sky.

Lr is the luminance reflected by the surface of the sea,

Lu is the luminance diffusely reflected by the entirety of the scattering

and absorbing medium represented by seawater,

Ta is the transmission in the atmosphere.

The information sought is contained in L , and the other terms appear as

spurious luminances.

- Calculation of luminance L* is a classical problem of radiativve transfer \

in the atmosphere, while calculation of Lr involves the reflection of light rays

on a surface which generally is not a plane one but fluctuates in time as ai

result of the effect of winds. A study of this subject is to be found in

references [3], [38].

More detailed discussion is devoted here to the methods of theoretical

evaluation of luminance L deriving from the sea. Among the various methods

, -- described in Part II, that making use of the invariance principles- (II.3)

would appear to be well suited to the problem. As a matter of fact, no attempt

is made'to learn the distribution of luminances in the medium, but only the
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overall effect of the medium on the incident daylight. Knowledge of the diffuse

reff'ection operator is thus enough to provide an answer to the questions raised.

However, the influence of the turbidity of the water and the wavelength, which

are manifested in variation in ratio b/c, would be difficult to evaluate, in

view 6f the fact that linear variation in this ratio does not appear in the

solutions. A method such as this does not appear to have been used in the case

of seawater.

On the other hand, the natural solution method directly reveals several

interesting points [75].

- - The contribution to the total backscattered luminance made by each order

-- of luminance is the same when the medium is a purely scattering one. The relative

contribution of luminance of order i to the total luminance is consequently

proportional to ratio i(b/c) 1 (see II.2.2.).

- Since the directly transmitted luminance becomes small in comparison to

the diffuse luminance as soon as the optical depth exceeds several units, the

luminance backscattered fr6m the sea-in the main reflects only the absorbing

. nd scattering content of the surface layers (1 or 2 optical depths).

- Lastly, the spectral dependence of thislluminance is associated directly

with that of ratio b/c in the surface layers, since the larger is ratiomb/c,

--the greater is the backscattered luminance for the same incident luminance value /
(equation 57).

These properties may be summarized by the following expression, in keeping

with the notation presented in Section 11.2.

L (0, 8) = (b/c) L (0, 6) /2 < < r
i=o

L+ (o, e) L (O, 6) = f (6) whatever the value of j (56)

L (0, e) f (0) (b/c) 1
= f (6) b/c ; /2 < < 57)i = 1 - b/ (57)

in which f(e) is a function which depends on the nature of the surface illumina-

tion. It is to be noted further that the term L1 (0, 0) is taken as equal to

zero, since there is no direct luminance pointed upward, the bottom of the ocean

being assumed to be remote enough so that reflection effects may be disregarded.
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Lastly, a very complete ocean-atmosphere model can be obtained by means of

the Monte Carlo method, and thus numerical study may be made of the terms of

expression (55) [65, 64]. Practical study has also been made of the influence

of the bottom on ascending illumination,; except in the last-named reference.

As soon as the optical length exceeds three, this method is no longer sensitive,

I -- even when the albedo of the bottom is taken as equaling unity. I

111.3. Artificial Sources /1.3.16

This section concerns theoretical study of the obligation of electro-

( magnetic waves emitted by artificial sources such as lamps or a laser. This

problem is more or less directly related to that of transmission of information

over optical channels and is of considerable interest for this reason. This

subject is dealt with in other works; hence discussion here will be confined

to several simple sources which have already been studied. A certain number of

studies [48, 49, 55] provide the basic concepts relating to the optical values

to be determined in order to ensure the transmission of an image. These values

may be derived from the response of the medium when it is illuminated either by

C an omnidirectional point source or by an unidirectional point source (Cthe }

-laser ray is a good approximation). It is to be pointed out that examination Lof

these particular source cases is of actual value only to the extent that the

medium is considered to be linear. In addition, the validity of such an

assumption has been discussed in [30] for the case of seawater.

111.3.1. Omnidirectional Point Source (See Figure 6)

The problem of interest is to learn the distribution of luminances at a

,certain distance R from the source or its Fourier transform-6f angularli ,

.frequencies in space, which, in the case of incoherent light, is the modulation--I

transfer function (MTF) [98].

Several methods have been used to solve this problem. They all involve

approximations based on the fact that the scattering takes place for the most

Spart at small angles. Mention may be made of the method of Wells, who provides-an

analytical solution and gives the MTF as a function of distance [97]. The

following is the principle of calculation: in an elementary layer of the medium

the distribution of the luminances at the exit from the layer may be derived
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from that at the entrance by a product of convolution with the scattering indica-

trix (when the scattering angle is not large). The solution presents no

difficulty in the Fourier space. Other methods have been proposed, ones which

make use of the principles of invariance [104] or of Monte Carlo calculations

[17]. They provide numerical results but not an analytical solution. A compari-

son of these methods has recently been published [105], and the uncertainty

regarding the scattering indicatrix at very small angles [53] scarcely permits

evaluation of the validity of the various approximations made. Lastly, the

natural solution method might also be applied to this case and would yield

directly the magnitude of the various scattering orders without resort being

made to the small angle approximations.

111.3.2. Unidirectional Point Source (See Figure 7)

Since lasers have made their appearance a large number of studies have

been undertaken on propagation of the light generated by such a source. Mention

has already been made (11-5) of several theories on this subject when the

scattering is due only to fluctuation of the refraction index. The effect of

scattering of this type is appreciable for high angular frequencies. The effect

due to the scattering indicatrix of seawater particles, which is not necessarily

random in nature, has also been studied from the theoretical viewpoint and

a prior- concerns lower angular frequencies. The problem is to determine the

distribution of illumination in a plane perpendicular to the initial path of

the light beam.

In accordance with the principle of reciprocity, the problem is the same

as that dealt with in Section 111.2.1. [26]), but the formulation and the solution

are different. The Monte Carlo method has been used and the numerical results,

compared with the experimental.data, are presented in such a way that they can

very easily be exploited [26]. (In particular, it is possible to infer from

them the illumination deriving from a cone of light, and the extinction

coefficient valid in this case is compared with the optical characteristics')

The transfer equation corresponding to the problem formulated has been

solved by again making certain plausible approximations (small angles, use of

Fourier transforms) [3, 12]. The theoretical results are to be compared with
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those obtained by way of experiment; in particular, two empirical formulas are

proposed, one for illumination on the axis of a source characterized by a certain

amount of divergence [22], and the other for illumination in a plane perpendicular

to a unidirectional source [37]. It has also been found by way of experiment

that illumination in the vicinity of the point of impact of a beam is Gaussian

in distribution [47]. Lastly, certain calculations have been proposed which are

based on the fact that scattering at small angles may be considered to be a

random phenomenon [102, 5a, 23]_,

111.3.3. Extended Sources

There is no single method which may be applied to gain precise knowledge

of the propagation of.light coming from a nonpoint source (this being necessary

in photography, for example). The study is of necessity subdivided into con-

sideration of several regions of space frequencies in space: that of the high

frequencies (observation of minute details), which, as we saw in 11.5, involves

large-scale index fluctuations and the scattering indicatrix of particles at

very small angles (less than a few hundredths of a radian); that in which the

scattering indicatrix of the particles concerns medium angles (111.3.1.); and

lastly, the region of low space frequencies in which scattering as a whole

takes place. Study of the last-named region concerns examination of the general

contrasts of an object of considerable vertical extent. The simple model of

Preisendorfer (11.1.3.) may then yield acceptable results, while the approxima-

tions employed in the methods cited in 111.3.2. and 111.3.3. become less valid.

111.4. Inverse Problems

In the problems considered in the foregoing, which are described in general

as "direct" ones, the optical characteristics (scattering and attenuation

coefficients, scattering indicatrix) were ,assumed to be known, as were also the

initial conditions. The distribution of the luminances of of the quantities

derived from them were determined on the basis of these data. In the "inverse"

problems the optical characteristics of the medium are inferred from the

initial conditions and from the distribution of the luminances within the medium.

The interest of the latter methods is apparent when the optical characteristics

of the medium are unknown or can be measured only with difficulty, and when on /1.3.17
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the other hand the experimental results provide direct or indirect access to the

distribution of the luminances.

There are two methods of dealing with these problems. The relationships

between optical characteristics and luminance distribution are sought by

analytical means, this necessarily leading in the case .of seawater to an

attempt to arrive at the scattering indicatrix in the form of an expansion into

Legendre polynomials or in a form approximating a simple function. One may

-- also select an indicatrix a priori, perform the calculations by the previously

described methods, compare the results obtained with the experimental results,

subsequently modify the indicatrix, and begin again in order to obtain a

satisfactory result. This is a process of iteration.

In all instances it is necessary to define the form of the indicatrix

a priori, and it ultimately is never certain that it is the real form, even

when the results are good. By way of example several typical inverse problems

are discussed in what follows, two of which require no knowledge of the scattering

indicatrix and thus may be fully solved.

III.4.1. Absorption Coefficient

This is a simple case making direct use of equation (llb). When the medium

is a plane-parallel one, this being a good approximation as regards the pene-

tration of daylight, this equation is written as follows:

dE dE

dz dz oJ (8)

in which Ed and Eu represent respectively plane descending and ascending

illumination. These illuminations are measured on a routine basis, and the

scalar illumination may also be measured in this manner, for example, by use of

a spherical scattering collector. The absorption is thus derived from these

-i measurements. This absorption coefficient may also be obtained as the difference~

between the attenuation coefficient and the total scattering coefficient,

but the result is much less exact, since the absolute value of these coeffi-

cients is very difficult yto determine.
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111.4.2. Attenuation Coefficient

By application of transfer equation (9) to horizontal luminance in a plane-

-parallel medium, we obtain L
L (59)

This is the black screen method [41, 34]. The attenuation coefficient may

be measured by comparing the horizontal luminance of water at a depth with the

apparent luminance of a black screen situated a known distance from the

observation point. This method has also been employed in the atmosphere [22b].

111.4.3. Form of Scattering Indicatrix

This indicatrix may be derived from the distribution of the luminances,

and in particular from that present under asymptotic conditions. As a matter of

fact, each form of indicatrix has a boundary distribution of its own corre-

sponding to it. The two types of approach indicated above may be applied,

but we will consider here an analytical method described at length in reference

(106]. The scattering indicatrix is soight in the form of an expansion into

Legendre polynomials. This expansion is first applied to the known distributions

of the luminances, and the different moments of the angular distribution of the

luminances are then calculated. (The zero order moment is spherical illumination,

and the first order moment is plane illumination.) It is demonstrated that

recurrent relationships exist between the different moments and the coefficients

of expansion of the indicatrix. The latter values may thus be calculated step-

-by-step.

The principle of this method has actually been applied [81, 28], but it

must be observed that, since the scattering indicatrix is highly pointed, the

expansion must be carried to fairly high order. This requires very precise

knowledge of the luminances. It is to be noted that, if the asymptotic condi-

tions are used, only the first terms of the expansion can be obtained with

precision. As a matter of fact, variations in the indicatrix exert but little

influence on the form of luminance distribution [74, 107]. It is shown in

[107] that the first 5 to 10 terms suffice for determination of the asymptotic

distribution with precision. This means, again, that this method can be

employed to determine the form of the indicatrix only for angles which are not

too small.
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In reality a good direct knowledge of the indicatrix is available in this

region, and thus these calculations are generally not necessary.

III.4.4 Scattering Indicatrix at Small Angles

The situation is entirely different as regards small angles, for which only

very few measurements are available. In addition, it is in this region (< 10)

that the form of the indicatrix may vary [53] according to the scale considered.

Physical measurements permitting determination of the form of this indicatrix

by an inverse method should be sensitive to change in the luminance distribution

at small angles. Hence study must be made, for example, of the propagation of

a collimated beam or of the modulation transfer function [17]. It has unfor-

tunately been found that there appear in these problems two physical phenomena

the effects of which are superimposed: optical scattering (particles, molecular

scattering) and index fluctuations. Thus the inverse problem is complicated

by the fact that it is not easy to distinguish the two types of scattering on

the basis of experimental data (distributions of illumination perpendicular to /1.3.18

the beamI. Other information on the patterns of index fluctuation must be

obtained independently. Recent developments in study of seawater transfer

should permit exploration of this region.

Findings

A broad spectrum of theoretical methods are available for calculation of'

the propagation of electromagnetic waves in seawater. The following conclusions

may be drawn from the foregoing discussion:

Only a few papers have translated these theories into calculations, and

above all into calculations which may be used directly for forecasting. While

the analytical methods have been developed somewhat of late by the use of eigen-

functions, the peculiar nature of these functions often hampers their application.

The numerical methods, in turn, which are well suited to computer calculations,

are found to be highly practical, but an effort must be exerted to present the

results in a form which can be utilized by persons who do not have direct access

to the programs, which always take a long time to elaborate. One goal which

could be assigned to the calculations would be, for example, the task of relating

the extinction coefficients to the optical characteristics by making objective

evaluation of the influence of the initial conditions and their importance.
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The form of the scattering indicatrix at very small angles continues to be

a problem which must be solved if it is desired to forecast the limits of infor-

mation transmission in seawater, and it would appear that it is at the present

still necessary to compare the theoretical with the experimental results in

order to determine the influence of index fluctuations.

Considering the relatively constant form of the scattering indicatrix,

we have also become aware of the importance assumed by the b/c ratio in explana-

tion of penetration by electromagnetic waves. Thus in order to make a comparison

among different measurements it is useful to determine this ratio characteristic

of experimental conditions.

Note: It must be pointed out that the papers by G. V. Rozenberg have not

been analyzed in this survey, for documentation reasons. In addition, the

publication of an important treatise on Oceanographic optics by R. W.

Preisendorfer is announced.
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